Cutting Out the Middleman: Measuring Nuclear Area in Histopathology Slides Without Segmentation
نویسندگان
چکیده
The size of nuclei in histological preparations from excised breast tumors is predictive of patient outcome (large nuclei indicate poor outcome). Pathologists take into account nuclear size when performing breast cancer grading. In addition, the mean nuclear area (MNA) has been shown to have independent prognostic value. The straightforward approach to measuring nuclear size is by performing nuclei segmentation. We hypothesize that given an image of a tumor region with known nuclei locations, the area of the individual nuclei and region statistics such as the MNA can be reliably computed directly from the image data by employing a machine learning model, without the intermediate step of nuclei segmentation. Towards this goal, we train a deep convolutional neural network model that is applied locally at each nucleus location, and can reliably measure the area of the individual nuclei and the MNA. Furthermore, we show how such an approach can be extended to perform combined nuclei detection and measurement, which is reminiscent of granulometry.
منابع مشابه
Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach
Analysis of histopathology slides is a critical step for many diagnoses, and in particular in oncology where it defines the gold standard. In the case of digital histopathological analysis, highly trained pathologists must review vast wholeslide-images of extreme digital resolution (100, 000 pixels) across multiple zoom levels in order to locate abnormal regions of cells, or in some cases singl...
متن کاملHistopathology Using Only Global Labels: a Weakly-supervised Approach
Analysis of histopathology slides is a critical step for many diagnoses, and in particular in oncology where it defines the gold standard. In the case of digital histopathological analysis, highly trained pathologists must review vast wholeslide-images of extreme digital resolution (100, 000 pixels) across multiple zoom levels in order to locate abnormal regions of cells, or in some cases singl...
متن کاملHistopathology Using Only Global Labels: a Weakly-supervised Approach
Analysis of histopathology slides is a critical step for many diagnoses, and in particular in oncology where it defines the gold standard. In the case of digital histopathological analysis, highly trained pathologists must review vast wholeslide-images of extreme digital resolution (100, 000 pixels) across multiple zoom levels in order to locate abnormal regions of cells, or in some cases singl...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملWavelet-based multiscale texture segmentation: Application to stromal compartment characterization on virtual slides
We aim at segmenting very large images of histopathology virtual slides with an heterogeneous and complex content. To this end, we propose a multiscale framework for texture-based color image segmentation. The core of the method is based on a waveletdomain hidden Markov tree model and a pairwise classifiers design and selection. The classifier selection is based on a study of the influence of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016